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Abstract. We present a geometric description of lepton flavor mixing and CP violation in matter by
using the language of leptonic unitarity triangles. The exact analytical relations for both sides and inner
angles are established between every unitarity triangle in vacuum and its effective counterpart in matter.
The typical shape evolution of six triangles with the terrestrial matter density is illustrated for a realistic
long-baseline neutrino oscillation experiment.
PACS. 14.60.Pq, 13.10.+q, 25.30.Pt

1 Introduction

Recent solar [1], atmospheric [2], reactor (KamLAND [3]
and CHOOZ [4]) and accelerator (K2K [5]) neutrino oscil-
lation experiments have provided us with very convincing
evidence that neutrinos are massive and lepton flavors are
mixed. In the framework of three lepton families, the phe-
nomena of flavor mixing and CP violation are described
by a 3×3 unitary matrix V , which relates the mass eigen-
states of three neutrinos (ν1, ν2, ν3) to their flavor eigen-
states (νe, νµ, ντ ):νe

νµ

ντ

 =

Ve1 Ve2 Ve3

Vµ1 Vµ2 Vµ3

Vτ1 Vτ2 Vτ3


ν1

ν2

ν3

 . (1)

No matter whether neutrinos are Dirac or Majorana par-
ticles, leptonic CP and T violation in normal neutrino–
neutrino or antineutrino–antineutrino oscillations depends
only upon a single rephasing-invariant parameter J [6],
defined through

Im(VαiVβjV
∗
αjV

∗
βi) = J

∑
γ,k

(εαβγεijk) , (2)

where Greek and Latin subscripts run respectively over
(e, µ, τ) and (1, 2, 3). A challenging task of the future long-
baseline neutrino oscillation experiments is to measure J ,
so as to establish the existence of CP violation in the
lepton sector. In principle, a determination of J is also
possible from the four independent moduli |Vαi| [7] whose
magnitudes can be measured in some CP conserving pro-
cesses.

a e-mail: zhanghe@mail.ihep.ac.cn
b e-mail: xingzz@mail.ihep.ac.cn

The unitarity of V implies that its nine matrix ele-
ments are constrained by two sets of normalization condi-
tions and two sets of orthogonality relations:∑

i

(V ∗
αiVβi) = δαβ ,∑

α

(V ∗
αiVαj) = δij . (3)

The six orthogonality relations define six triangles in the
complex plane, as first discussed in [8]. Six unitarity trian-
gles have 18 different sides and nine different inner angles,
but their areas are all identical to J /2. So far, some par-
ticular attention has been paid to triangles �3 [8] and �τ

[9] shown in Fig. 1. Because current experimental data in-
dicate that V has a nearly bi-maximal mixing pattern with
|Ve3| � 1, one can easily observe that three sides of �3
are comparable in magnitude; i.e., |Ve1V

∗
e2| ∼ |Vµ1V

∗
µ2| ∼

|Vτ1V
∗
τ2| ∼ 0.5. It is therefore possible to establish �3

and determine its three angles [7], once its three sides
are measured to an acceptable degree of accuracy. In con-
trast, one side of �τ is much shorter than its other two
sides; i.e., |Ve1V

∗
µ1| ∼ |Ve2V

∗
µ2| � |Ve3V

∗
µ3|. To establish �τ

needs much more precise data on its three sides, which
must be able to show |Ve1V

∗
µ1| + |Ve3V

∗
µ3| > |Ve2V

∗
µ2| or

|Ve2V
∗
µ2| + |Ve3V

∗
µ3| > |Ve1V

∗
µ1| [9]. Such an accuracy re-

quirement is practically impossible to be satisfied in the
near future1.

1 To see this point more clearly, one may recall the Cabibbo–
Kobayashi–Maskawa (CKM) unitarity triangle of quark flavor
mixing defined by VudV ∗

cd+VusV
∗

cs+VubV
∗

cb = 0, whose two sides
are much longer than the other one: |VudV ∗

cd| ∼ |VusV
∗

cs| �
|VubV

∗
cb|. Although the six CKM matrix elements associated

with this triangle have all been measured to a relatively good
degree of accuracy [24], it remains unable to show |VudV ∗

cd| +
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Fig. 1. Leptonic unitarity triangles in
the complex plane. Each triangle is
named by the index that is not man-
ifest in its three sides

To measure J and |Vαi| in realistic long-baseline ex-
periments of neutrino oscillations, the terrestrial matter
effects must be taken into account [10]. The probabilities
of neutrino oscillations in matter can be expressed in the
same form as those in vacuum, however, if we define the
effective neutrino masses m̃i and the effective lepton flavor
mixing matrix Ṽ in which the terrestrial matter effects are
already included [11]. In analogy to the definition of J in
(2), the effective CP violating parameter J̃ in matter can
be defined as

Im(ṼαiṼβj Ṽ
∗
αj Ṽ

∗
βi) = J̃

∑
γ,k

(εαβγεijk) , (4)

where (α, β, γ) and (i, j, k) run respectively over (e, µ, τ)
and (1, 2, 3). One may similarly define the unitarity trian-
gles in matter with the help of the unitarity conditions∑

i

(
Ṽ ∗

αiṼβi

)
= δαβ ,

∑
α

(
Ṽ ∗

αiṼαj

)
= δij . (5)

For example, the effective counterparts of the triangles �3

and �τ are denoted respectively by �̃3 and �̃τ . Because
of the terrestrial matter effects, the shapes of ∆̃3 and ∆̃τ

are likely to be dramatically different from those of ∆3
and ∆τ . It is then possible to have |Ṽe1Ṽ

∗
µ1| ∼ |Ṽe2Ṽ

∗
µ2| ∼

|Ṽe3Ṽ
∗
µ3| for some proper values of the neutrino beam en-

ergy. If this speculation is right, one will be able to calcu-
late J̃ by using three sides of �̃τ .

|VubV
∗

cb| > |VusV
∗

cs| or |VusV
∗

cs| + |VubV
∗

cb| > |VudV ∗
cd| – namely,

the area of this triangle (or CP violation) cannot be established
from its three sides at present

The purpose of this article is to carry out a systematic
analysis of leptonic unitarity triangles in matter. We shall
derive the exact analytical relations between |Vαi|2 and
|Ṽαi|2 for a constant matter density profile. The sides of �̃i

(for i = 1, 2, 3) and �̃α (for α = e, µ, τ) can then be linked
to those of �i and �α. The inner angles of �̃i and �̃α

will also be calculated in terms of the inner angles of �i

and �α. In addition, we shall discuss the matter-modified
rephasing invariants of V (such as J̃ and the off-diagonal
asymmetries of Ṽ ) and illustrate the typical shape changes
of �̃i and �̃α with the neutrino beam energy in a long-
baseline experiment. Our results are expected to be very
useful for a complete study of lepton flavor mixing and
CP violation in the era of precision measurements.

The remaining parts of this article are organized as
follows. In Sect. 2, we outline the master formulas to derive
m̃i and Ṽ in terms of mi and V . Section 3 is devoted to the
calculation of |Ṽαi|2. The analytical relations between the
inner angles of �̃i (or �̃α) and �i (or �α) are presented
in Sect. 4. Section 5 is devoted to illustrating the shape
evolution of �̃i and �̃α with the matter density. Finally,
a brief summary is given in Sect. 6.

2 Framework

In the flavor basis chosen in (1), the effective Hamiltonians
responsible for the propagation of neutrinos in vacuum
and in matter can respectively be written as

H =
1

2E

V

m2
1 0 0

0 m2
2 0

0 0 m2
3

V †

 ,
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H̃ =
1

2E

Ṽ

m̃2
1 0 0

0 m̃2
2 0

0 0 m̃2
3

 Ṽ †

 ; (6)

and their difference

H̃ − H =

a 0 0
0 0 0
0 0 0

 (7)

signifies the matter effect [12], where E denotes the neu-
trino beam energy, a =

√
2GFNe measures the charged-

current contribution to the νee
− forward scattering, and

Ne is the background density of electrons. In writing out
the expression of H̃, we have assumed that the matter den-
sity profile is constant (namely, Ne = constant). Such an
assumption is actually close to reality for most of the pro-
posed terrestrial long-baseline neutrino oscillation experi-
ments [13]. In order to establish the analytical relationship
between Ṽαi and Vαi, we define the two quantities

pαβ = 2EHαβ ,

qαβ = (2E)2 H−1 det H (8)

in vacuum and their effective counterparts

p̃αβ = 2EH̃αβ ,

q̃αβ = (2E)2 H̃−1 det H̃ (9)

in matter [14], where the subscripts α and β run over
e, µ and τ . The determinants of H and H̃ in (8) and
(9) are simply det H = m2

1m
2
2m

2
3/(2E)3 and det H̃ =

m̃2
1m̃

2
2m̃

2
3/(2E)3. In terms of m2

i (or m̃2
i ) and VαiV

∗
βi (or

ṼαiṼ
∗
βi), one can obtain

pαβ =
3∑

i=1

(
m2

i VαiV
∗
βi

)
,

p̃αβ =
3∑

i=1

(
m̃2

i ṼαiṼ
∗
βi

)
; (10)

and

qαβ =
1
2

3∑
k=1

(
m2

i m
2
jVαkV ∗

βkε2ijk

)
,

q̃αβ =
1
2

3∑
k=1

(
m̃2

i m̃
2
j ṼαkṼ ∗

βkε2ijk

)
. (11)

Although the exact analytical relations between Ṽαi and
Vαi have been derived in [11], they are not simple enough
to calculate ṼαiṼ

∗
βi (or ṼαiṼ

∗
αj), which are directly relevant

to the leptonic unitarity triangles in matter. Hence we
shall establish the relations between ṼαiṼ

∗
βi and VαiV

∗
βi in

a different and simpler way. Our strategy is as follows:
first, we express VαiV

∗
βi in terms of (pαβ , qαβ) and ṼαiṼ

∗
βi

in terms of (p̃αβ , q̃αβ); second, we find out the relationship
between (pαβ , qαβ) and (p̃αβ , q̃αβ); finally, we derive the
direct relations between ṼαiṼ

∗
βi and VαiV

∗
βi.

Equations (3), (5), (10) and (11) allow us to express
VαiV

∗
βi in terms of (pαβ , qαβ) and ṼαiṼ

∗
βi in terms of

(p̃αβ , q̃αβ). To see this point more clearly, we introduce
the coefficient matrices O and Õ:

O =

 1 1 1
m2

1 m2
2 m2

3

m2
2m

2
3 m2

1m
2
3 m2

1m
2
2

 ,

Õ =

 1 1 1
m̃2

1 m̃2
2 m̃2

3

m̃2
2m̃

2
3 m̃2

1m̃
2
3 m̃2

1m̃
2
2

 . (12)

Because the three neutrino masses are not exactly degen-
erate, the inverse matrices of O and Õ exist. Then one can
obtain Vα1V

∗
β1

Vα2V
∗
β2

Vα3V
∗
β3

 = O−1

δαβ

pαβ

qαβ

 ,

Ṽα1Ṽ
∗
β1

Ṽα2Ṽ
∗
β2

Ṽα3Ṽ
∗
β3

 = Õ−1

δαβ

p̃αβ

q̃αβ

 . (13)

Taking account of (6) and (7), we find that (pαβ , qαβ) and
(p̃αβ , q̃αβ) are connected with each other through

p̃αβ = pαβ + A

1 0 0
0 0 0
0 0 0

 ,

q̃αβ = qαβ + A

0 0 0
0 pττ −pτµ

0 −pµτ pµµ

 , (14)

where A ≡ 2Ea. A combination of (13) and (14) will lead
to the direct relations between ṼαiṼ

∗
βi and VαiV

∗
βi, as one

can see in the subsequent sections. The usefulness of (10)–
(14) for discussing the matter-induced properties of lepton
flavor mixing and CP violation has partly shown up in the
literature (see, e.g., [7,14–16]) and will be further demon-
strated in the following.

It is worth mentioning that the generic results obtained
above are only valid for neutrinos propagating in vacuum
and in matter. As for antineutrinos, the corresponding
formulas can straightforwardly be written out from (6)–
(14) through the replacements V =⇒ V ∗ and A =⇒ −A.

3 Moduli (α = β)

We first derive the relations between |Ṽαi|2 and |Vαi|2 by
taking α = β for (13). Once (14) is taken into account, we
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may concretely obtain|Ṽe1|2
|Ṽe2|2
|Ṽe3|2

 = Õ−1O

|Ve1|2
|Ve2|2
|Ve3|3

+ AÕ−1

0
1
0

 ,

|Ṽµ1|2
|Ṽµ2|2
|Ṽµ3|2

 = Õ−1O

|Vµ1|2
|Vµ2|2
|Vµ3|3

+ AÕ−1T

|Vτ1|2
|Vτ2|2
|Vτ3|2

 ,

|Ṽτ1|2
|Ṽτ2|2
|Ṽτ3|2

 = Õ−1O

|Vτ1|2
|Vτ2|2
|Vτ3|2

+ AÕ−1T

|Vµ1|2
|Vµ2|2
|Vµ3|3

 , (15)

where T is defined as

T =

 0 0 0
0 0 0

m2
1 m2

2 m2
3

 . (16)

In (15), the inverse matrix of Õ reads

Õ−1 =
1

∆̃12∆̃23∆̃31

m̃2
1∆̃23(m̃2

2 + m̃2
3) m̃2

1∆̃23 ∆̃23

m̃2
2∆̃31(m̃2

1 + m̃2
3) m̃2

2∆̃31 ∆̃31

m̃2
3∆̃12(m̃2

1 + m̃2
2) m̃2

3∆̃12 ∆̃12

 ,

(17)
where ∆̃ij ≡ m̃2

i − m̃2
j . With the help of (3) and (5) as

well as the relationship [7]

3∑
i=1

m̃2
i =

3∑
i=1

m2
i + A , (18)

we solve (15) and arrive at

|Ṽe1|2 =
∆31∆̂21

∆̃31∆̃21
|Ve1|2 +

∆32∆̂11

∆̃12∆̃13
|Ve2|2 +

∆̂11∆̂21

∆̃12∆̃13
,

|Ṽe2|2 =
∆12∆̂32

∆̃12∆̃32
|Ve2|2 +

∆13∆̂22

∆̃21∆̃23
|Ve3|2 +

∆̂22∆̂32

∆̃21∆̃23
,

|Ṽe3|2 =
∆23∆̂13

∆̃23∆̃13
|Ve3|2 +

∆21∆̂33

∆̃31∆̃32
|Ve1|2 +

∆̂33∆̂13

∆̃31∆̃32
; (19)

and

|Ṽµ1|2 =
∆31∆̂21

∆̃31∆̃21
|Vµ1|2 +

∆32∆̂11

∆̃12∆̃13
|Vµ2|2 +

A∆13

∆̃12∆̃13
|Vτ1|2

+
A∆23

∆̃12∆̃13
|Vτ2|2 + C1 ,

|Ṽµ2|2 =
∆12∆̂32

∆̃12∆̃32
|Vµ2|2 +

∆13∆̂22

∆̃21∆̃23
|Vµ3|2 +

A∆21

∆̃21∆̃23
|Vτ2|2

+
A∆31

∆̃21∆̃23
|Vτ3|2 + C2 ,

|Ṽµ3|2 =
∆23∆̂13

∆̃23∆̃13
|Vµ3|2 +

∆21∆̂33

∆̃31∆̃32
|Vµ1|2 +

A∆32

∆̃31∆̃32
|Vτ3|2

+
A∆12

∆̃31∆̃32
|Vτ1|2 + C3 ; (20)

and

|Ṽτ1|2 =
∆31∆̂21

∆̃31∆̃21
|Vτ1|2 +

∆32∆̂11

∆̃12∆̃13
|Vτ2|2 +

A∆13

∆̃12∆̃13
|Vµ1|2

+
A∆23

∆̃12∆̃13
|Vµ2|2 + C1 ,

|Ṽτ2|2 =
∆12∆̂32

∆̃12∆̃32
|Vτ2|2 +

∆13∆̂22

∆̃21∆̃23
|Vτ3|2 +

A∆21

∆̃21∆̃23
|Vµ2|2

+
A∆31

∆̃21∆̃23
|Vµ3|2 + C2 ,

|Ṽτ3|2 =
∆23∆̂13

∆̃23∆̃13
|Vτ3|2 +

∆21∆̂33

∆̃31∆̃32
|Vτ1|2 +

A∆32

∆̃31∆̃32
|Vµ3|2

+
A∆12

∆̃31∆̃32
|Vµ1|2 + C3 , (21)

where ∆ij ≡ m2
i − m2

j , ∆̂ij ≡ m2
i − m̃2

j , and

C1 = −∆31∆23 + ∆̂31∆̂32 + ∆̂31∆̂33

∆̃12∆̃13
,

C2 = −∆12∆31 + ∆̂12∆̂13 + ∆̂12∆̂11

∆̃21∆̃23
,

C3 = −∆23∆12 + ∆̂23∆̂21 + ∆̂23∆̂22

∆̃31∆̃32
. (22)

In Appendix A, we list the explicit expressions of ∆̃ij and
∆̂ij in terms of ∆ij and A. It is then possible to evaluate
the deviation of |Ṽαi|2 from |Vαi|2 by using the formulas
obtained above. Of course, |Ṽαi|2 = |Vαi|2 holds at the
limit A → 0 or E → 0.

Two sets of normalization conditions given in (5) allow
us to define two off-diagonal asymmetries of Ṽ :

ÃL ≡ |Ṽe2|2 − |Ṽµ1|2 = |Ṽµ3|2 − |Ṽτ2|2 = |Ṽτ1|2 − |Ṽe3|2 ,

ÃR ≡ |Ṽe2|2 − |Ṽµ3|2 = |Ṽµ1|2 − |Ṽτ2|2 = |Ṽτ3|2 − |Ṽe1|2 .

(23)

They can straightforwardly be calculated by using (19),
(20) and (21). Comparing between ÃL (or ÃR) and its
counterpart AL (or AR) in vacuum, we may examine the
matter effect on the geometric structure of V . In particu-
lar, the six matter-modified unitarity triangles will reduce
to three pairs of congruent triangles [17], if ÃL = 0 or
ÃR = 0 holds.

The sides of six unitarity triangles can also be obtained
from (19), (20) and (21). If the three sides of a specific
triangle are comparable in magnitude, one may use them
to calculate the area of this triangle – namely, the CP
violating invariant J̃ . Indeed, J̃ is given by

J̃ 2 = |Ṽαi|2|Ṽβj |2|Ṽαj |2|Ṽβi|2

− 1
4

(
1 + |Ṽαi|2|Ṽβj |2 + |Ṽαj |2|Ṽβi|2 (24)
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−|Ṽαi|2 − |Ṽβj |2 − |Ṽαj |2 − |Ṽβi|2
)2

,

in which α 	= β running over (e, µ, τ) and i 	= j running
over (1, 2, 3). The implication of this result is obvious: im-
portant information about leptonic CP violation can in
principle be extracted from the measured moduli of four
independent matrix elements of Ṽ .

4 Angles (α �= β)

Now let us focus our attention on the inner angles of six
unitarity triangles. There are only nine independent an-
gles, which appear either in triangles �e,µ,τ or in triangles
�1,2,3 (see Fig. 1 for illustration). Hence it is only neces-
sary to consider (�e, �µ, �τ ) and their effective counter-
parts (�̃e, �̃µ, �̃τ ) in the calculation of nine angles. To
be specific, an inner angle of ∆α or ∆̃α (for α = e, µ or τ)
can be defined as

φij
αβ ≡ arg

(
− VαiV

∗
βi

VαjV ∗
βj

)
,

φ̃ij
αβ ≡ arg

(
− ṼαiṼ

∗
βi

Ṽαj Ṽ ∗
βj

)
, (25)

where (α, β) run over (e, µ), (µ, τ) and (τ, e), and (i, j)
run over (1, 2), (2, 3) and (3, 1). Taking account of (2) and
(4), we obtain

cot φij
αβ =

1
J Re

(
VαiVβjV

∗
αjV

∗
βi

)
,

cot φ̃ij
αβ =

1
J̃ Re

(
ṼαiṼβj Ṽ

∗
αj Ṽ

∗
βi

)
. (26)

Note that J and J̃ are related with each other through
the equation [18]

J̃ ∆̃12∆̃13∆̃23 = J ∆12∆13∆23 . (27)

In order to link cot φ̃ij
αβ to cot φij

αβ via (26), we need to
find out the relationship between Re(ṼαiṼβj Ṽ

∗
αj Ṽ

∗
βi) and

Re(VαiVβjV
∗
αjV

∗
βi).

For α 	= β, (13) and (14) yieldṼe1Ṽ
∗
µ1

Ṽe2Ṽ
∗
µ2

Ṽe3Ṽ
∗
µ3

 = Õ−1O

Ve1V
∗
µ1

Ve2V
∗
µ2

Ve3V
∗
µ3

 ,

Ṽe1Ṽ
∗
τ1

Ṽe2Ṽ
∗
τ2

Ṽe3Ṽ
∗
τ3

 = Õ−1O

Ve1V
∗
τ1

Ve2V
∗
τ2

Ve3V
∗
τ3

 , (28)

Ṽµ1Ṽ
∗
τ1

Ṽµ2Ṽ
∗
τ2

Ṽµ3Ṽ
∗
τ3

 = Õ−1O

Vµ1V
∗
τ1

Vµ2V
∗
τ2

Vµ3V
∗
τ3

− AÕ−1T

Vµ1V
∗
τ1

Vµ2V
∗
τ2

Vµ3V
∗
τ3

 ,

where T has been defined in (16). With the help of (17)
and (18), one may solve (28) and obtain the matter-
induced corrections to VαiV

∗
βi. Three sides of the effective

unitarity triangle �̃e, �̃µ or �̃τ are then given by

Ṽe1Ṽ
∗
µ1 =

∆̂21∆31

∆̃21∆̃31
Ve1V

∗
µ1 +

∆̂11∆32

∆̃12∆̃13
Ve2V

∗
µ2 ,

Ṽe2Ṽ
∗
µ2 =

∆̂32∆21

∆̃32∆̃21
Ve2V

∗
µ2 +

∆̂22∆31

∆̃12∆̃23
Ve3V

∗
µ3 ,

Ṽe3Ṽ
∗
µ3 =

∆̂13∆23

∆̃13∆̃23
Ve3V

∗
µ3 +

∆̂33∆21

∆̃13∆̃23
Ve1V

∗
µ1 (29)

for �̃τ ; and

Ṽτ1Ṽ
∗
e1 =

∆̂21∆31

∆̃21∆̃31
Vτ1V

∗
e1 +

∆̂11∆32

∆̃12∆̃13
Vτ2V

∗
e2 ,

Ṽτ2Ṽ
∗
e2 =

∆̂32∆21

∆̃32∆̃21
Vτ2V

∗
e2 +

∆̂22∆31

∆̃12∆̃23
Vτ3V

∗
e3 ,

Ṽτ3Ṽ
∗
e3 =

∆̂13∆23

∆̃13∆̃23
Vτ3V

∗
e3 +

∆̂33∆21

∆̃13∆̃23
Vτ1V

∗
e1 (30)

for �̃µ; and

Ṽµ1Ṽ
∗
τ1 =

(∆̂21 + A)∆31

∆̃21∆̃31
Vµ1V

∗
τ1 +

(∆̂11 + A)∆32

∆̃12∆̃13
Vµ2V

∗
τ2 ,

Ṽµ2Ṽ
∗
τ2 =

(∆̂32 + A)∆21

∆̃32∆̃21
Vµ2V

∗
τ2 +

(∆̂22 + A)∆31

∆̃12∆̃23
Vµ3V

∗
τ3 ,

Ṽµ3Ṽ
∗
τ3 =

(∆̂13 + A)∆23

∆̃13∆̃23
Vµ3V

∗
τ3 +

(∆̂33 + A)∆21

∆̃13∆̃23
Vµ1V

∗
τ1

(31)

for �̃e. It is remarkable that (29), (30) or (31), together
with (2) and (4), can be used to derive (27). The relation-
ship between Re(ṼαiṼβj Ṽ

∗
αj Ṽ

∗
βi) and Re(VαiVβjV

∗
αjV

∗
βi)

can also be derived from these equations. Then we are
able to establish the direct connection between cot φ̃ij

αβ

and cotφij
αβ .

Comparing between the definition of φij
αβ and the

simpler notation of nine inner angles in Fig. 1, we have
∠1 = φ12

µτ , ∠2 = φ23
µτ , ∠3 = φ31

µτ ; ∠4 = φ12
τe, ∠5 = φ23

τe,
∠6 = φ31

τe; ∠7 = φ12
eµ, ∠8 = φ23

eµ, ∠9 = φ31
eµ. One may use

the similar notation (∠̃1, · · ·, ∠̃9) to replace φ̃ij
αβ for the

matter-modified unitarity triangles. Therefore,

cot ∠̃1 =
(∆̂32 + A)(∆̂21 + A)

∆32∆̃21
cot ∠1

+
(∆̂11 + A)(∆̂22 + A)

∆12∆̃12
cot ∠2

+
(∆̂21 + A)(∆̂22 + A)∆13

∆12∆23∆̃12
cot ∠3

+
(∆̂11 + A)(∆̂32 + A)

J ∆31∆̃12
|Vµ2V

∗
τ2|2 ,
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Table 1. Numerical illustration of the terrestrial matter effect
on nine inner angles of six effective unitarity triangles (�̃e,µ,τ

and �̃1,2,3) in a long-baseline neutrino oscillation experiment,
where ν stands for neutrinos and ν represents antineutrinos

Angle Ṽ = V E = 1 GeV E = 2 GeV E = 3 GeV

∠̃1 166.9◦ 143.3◦ (ν)
141.2◦ (ν)

104.9◦ (ν)
119.0◦ (ν)

73.4◦ (ν)
103.2◦ (ν)

∠̃2 3.9◦ 35.5◦ (ν)
0.8◦ (ν)

74.5◦ (ν)
0.4◦ (ν)

106.1◦ (ν)
0.2◦ (ν)

∠̃3 9.2◦ 1.2◦ (ν)
38.1◦ (ν)

0.6◦ (ν)
60.7◦ (ν)

0.5◦ (ν)
76.6◦ (ν)

∠̃4 6.6◦ 18.4◦ (ν)
19.4◦ (ν)

37.6◦ (ν)
30.5◦ (ν)

53.3◦ (ν)
38.4◦ (ν)

∠̃5 88.1◦ 72.2◦ (ν)
89.6◦ (ν)

52.7◦ (ν)
89.8◦ (ν)

36.9◦ (ν)
89.9◦ (ν)

∠̃6 85.4◦ 89.4◦ (ν)
71.0◦ (ν)

89.7◦ (ν)
59.7◦ (ν)

89.8◦ (ν)
51.7◦ (ν)

∠̃7 6.6◦ 18.4◦ (ν)
19.4◦ (ν)

37.6◦ (ν)
30.5◦ (ν)

53.3◦ (ν)
38.4◦ (ν)

∠̃8 88.1◦ 72.2◦ (ν)
89.6◦ (ν)

52.7◦ (ν)
89.8◦ (ν)

36.9◦ (ν)
89.9◦ (ν)

∠̃9 85.4◦ 89.4◦ (ν)
71.0◦ (ν)

89.7◦ (ν)
59.7◦ (ν)

89.8◦ (ν)
51.7◦ (ν)

cot ∠̃2 =
(∆̂13 + A)(∆̂32 + A)

∆13∆̃32
cot ∠2

+
(∆̂22 + A)(∆̂33 + A)

∆23∆̃23
cot ∠3

+
(∆̂32 + A)(∆̂33 + A)∆21

∆23∆31∆̃23
cot ∠1

+
(∆̂22 + A)(∆̂13 + A)

J ∆12∆̃23
|Vµ3V

∗
τ3|2 ,

cot ∠̃3 =
(∆̂21 + A)(∆̂13 + A)

∆21∆̃13
cot ∠3

+
(∆̂11 + A)(∆̂33 + A)

∆31∆̃31
cot ∠1

+
(∆̂11 + A)(∆̂13 + A)∆32

∆12∆31∆̃31
cot ∠2

+
(∆̂21 + A)(∆̂33 + A)

J ∆23∆̃31
|Vµ1V

∗
τ1|2 ; (32)

and

cot ∠̃4 =
∆̂32∆̂21

∆32∆̃21
cot ∠4 +

∆̂11∆̂22

∆12∆̃12
cot ∠5

+
∆̂21∆̂22∆13

∆12∆23∆̃12
cot ∠6 +

∆̂11∆̂32

J ∆31∆̃12
|Vτ2V

∗
e2|2 ,

cot ∠̃5 =
∆̂13∆̂32

∆13∆̃32
cot ∠5 +

∆̂22∆̂33

∆23∆̃23
cot ∠6

+
∆̂32∆̂33∆21

∆23∆31∆̃23
cot ∠4 +

∆̂22∆̂13

J ∆12∆̃23
|Vτ3V

∗
e3|2 ,

cot ∠̃6 =
∆̂21∆̂13

∆21∆̃13
cot ∠6 +

∆̂11∆̂33

∆31∆̃31
cot ∠4 (33)

+
∆̂11∆̂13∆32

∆12∆31∆̃31
cot ∠5 +

∆̂21∆̂33

J ∆23∆̃31
|Vτ1V

∗
e1|2 ;

and

cot ∠̃7 =
∆̂32∆̂21

∆32∆̃21
cot ∠7 +

∆̂11∆̂22

∆12∆̃12
cot ∠8

+
∆̂21∆̂22∆13

∆12∆23∆̃12
cot ∠9 +

∆̂11∆̂32

J ∆31∆̃12
|Ve2V

∗
µ2|2 ,

cot ∠̃8 =
∆̂13∆̂32

∆13∆̃32
cot ∠8 +

∆̂22∆̂33

∆23∆̃23
cot ∠9

+
∆̂32∆̂33∆21

∆23∆31∆̃23
cot ∠7 +

∆̂22∆̂13

J ∆12∆̃23
|Ve3V

∗
µ3|2 ,

cot ∠̃9 =
∆̂21∆̂13

∆21∆̃13
cot ∠9 +

∆̂11∆̂33

∆31∆̃31
cot ∠7 (34)

+
∆̂11∆̂13∆32

∆12∆31∆̃31
cot ∠8 +

∆̂21∆̂33

J ∆23∆̃31
|Ve1V

∗
µ1|2 .

These exact analytical results clearly show how nine inner
angles of six unitarity triangles get modified by the matter
effects.

5 Illustration

We proceed to numerically illustrate the matter effects on
the shapes of six unitarity triangles, the rephasing invari-
ant of CP violation, and the off-diagonal asymmetries of
V . In view of current solar [1] and atmospheric [2] neutrino
oscillation data, we typically take ∆21 ≈ 8×10−5 eV2 and
∆32 ≈ 2.3 × 10−3 eV2. We also take θ12 ≈ 33◦, θ23 ≈ 45◦,
θ13 ≈ 3◦ and δ ≈ 90◦ in the standard parametrization
of V [7]. It is unnecessary to specify two Majorana-type
CP violating phases of V in our calculations, because they
play no role in the configuration of leptonic unitarity tri-
angles [19]. The inputs taken above lead to J ≈ 0.012,
AL ≈ 0.147 and AR ≈ −0.203. This means that V is
asymmetric both about its Ve1–Vµ2–Vτ3 axis and about its
Ve3–Vµ2–Vτ1 axis, and the area of each triangle is about
8 times smaller than its maximal limit (i.e., J = 1/(6

√
3)

[6]).
For a realistic long-baseline neutrino oscillation exper-

iment, the dependence of terrestrial matter effects on the
neutrino beam energy can approximately be written as
A ≈ 2.28 × 10−4 eV2E/[GeV] [13]. This approximation is
reasonably good and close to reality only if the baseline
length is about 1000 km or shorter [20]. Of course, Ṽ = V
holds in the limit of E = 0 or A = 0. Typically taking
E = 1 GeV, 2 GeV and 3 GeV, we calculate the sides of
six effective unitarity triangles in matter and show the
changes of their shapes in Figs. 2–5. The corresponding
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Fig. 2. The shape evolution of three effective unitarity trian-
gles (�̃1, �̃2, �̃3) with the beam energy of neutrinos (+A and
V ) in a realistic long-baseline oscillation experiment, where
Sij

αα ≡ |ṼαiṼ
∗

αj | (for α = e, µ, τ and i, j = 1, 2, 3) has been
defined

Fig. 3. The shape evolution of three effective unitarity tri-
angles (�̃1, �̃2, �̃3) with the beam energy of antineutrinos
(−A and V ∗) in a realistic long-baseline oscillation experiment,
where Sij

αα ≡ |ṼαiṼ
∗

αj | (for α = e, µ, τ and i, j = 1, 2, 3) has
been defined

Fig. 4. The shape evolution of three effective unitarity trian-
gles (�̃e, �̃µ, �̃τ ) with the beam energy of neutrinos (+A and
V ) in a realistic long-baseline oscillation experiment, where
Sii

αβ ≡ |ṼαiṼ
∗

βi| (for i = 1, 2, 3 and α, β = e, µ, τ) has been
defined

Fig. 5. The shape evolution of three effective unitarity tri-
angles (�̃e, �̃µ, �̃τ ) with the beam energy of antineutrinos
(−A and V ∗) in a realistic long-baseline oscillation experiment,
where Sii

αβ ≡ |ṼαiṼ
∗

βi| (for i = 1, 2, 3 and α, β = e, µ, τ) has
been defined
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results for nine inner angles of �̃e,µ,τ or �̃1,2,3 are pre-
sented in Table 1, and the numerical dependence of J̃ , ÃL
and ÃR on E is illustrated in Fig. 6. Some comments and
discussions are in order.
(a) The smallness of θ13 (or |Ve3|) makes one side of �1 or
�2 strongly suppressed. When the terrestrial matter effect
with E ≥ 1 GeV is taken into account, three sides of �̃1

and �̃3 become comparable in magnitude for neutrinos
(+A and V ); or three sides of �̃2 and �̃3 become com-
parable in magnitude for antineutrinos (−A and V ∗). As
a consequence of matter corrections, the shortest side of
�2 (i.e., S31

ee ≡ |Ṽe3Ṽ
∗
e1| at A = 0) turns out to be shorter

for neutrinos; so does that of �1 (i.e., S23
ee ≡ |Ṽe2Ṽ

∗
e3| at

A = 0) for antineutrinos. We find that the shape of �̃3
is relatively stable against matter corrections, no matter
whether the neutrino beam or the antineutrino beam is
concerned.
(b) Similarly because of the smallness of θ13 (or |Ve3|),
one side of �µ or �τ is strongly suppressed. The terres-
trial matter effect becomes significant for E ≥ 1 GeV. In
this case, three sides of �̃µ and �̃τ are comparable in
magnitude for either neutrinos (+A and V ) or antineu-
trinos (−A and V ∗). An interesting feature of �̃e is that
its side S22

µτ ≡ |Ṽµ2Ṽ
∗
τ2| is dramatically sensitive to matter

corrections and becomes very short for neutrinos, while
its side S11

µτ ≡ |Ṽµ1Ṽ
∗
τ1| may significantly be suppressed

by matter effects for antineutrinos. One can see that the
shapes of �̃µ and �̃τ are relatively stable against matter
corrections, no matter whether the neutrino beam or the
antineutrino beam is concerned.
(c) Note that the input θ23 ≈ 45◦, which is well favored by
current atmospheric neutrino oscillation data [2], results
in |Vµi| ≈ |Vτi| (for i = 1, 2, 3). Hence triangles �µ and
�τ are congruent with each other; so are their effective
counterparts �̃µ and �̃τ . This accidental result has actu-
ally shown up in Figs. 4 and 5. From the phenomenological
point of view, it makes sense to measure θ23 accurately and
to examine its possible deviation from maximal mixing
(i.e., θ23 = 45◦ exactly), so as to explore the underlying
µ–τ flavor symmetry and its geometric manifestation in
leptonic unitarity triangles.
(d) Table 1 is helpful for us to understand the terrestrial
matter effect on nine inner angles of six unitarity trian-
gles. One can see that ∠̃6 and ∠̃9, which happen to be
identical as a consequence of θ23 ≈ 45◦, are relatively sta-
ble against matter corrections. In contrast, ∠̃2, ∠̃3 and ∠̃4
are rather sensitive to matter corrections.
(e) No matter how the sides and angles of six unitarity
triangles change with the matter effect, their area (J̃ /2)
is in most cases smaller than that in vacuum (J /2). This
unfortunate feature, as shown in Fig. 6, makes it hard to
directly measure leptonic CP or T violation in any re-
alistic long-baseline neutrino oscillations. If the neutrino
beam energy is small (e.g., about 1 GeV or smaller), the
matter-induced suppression of J is not significant. In this
case, a study of leptonic CP violation and unitarity trian-
gles in a medium-baseline neutrino oscillation experiment
seems more feasible [21].
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Fig. 6. Terrestrial matter effects on J , AL and AR for neu-
trinos (ν with +A and V ) and antineutrinos (ν with −A and
V ∗) in a realistic long-baseline oscillation experiment

(f) The matter effect on two off-diagonal asymmetries of
V is also illustrated in Fig. 6. One can see that ÃL ≈ 0
is a good approximation, when the beam energy of an-
tineutrinos satisfies E ≥ 1 GeV. In this interesting case,
one may approximately arrive at �̃e

∼= �̃1, �̃µ
∼= �̃2 and

�̃τ
∼= �̃3. Such a result can also be seen from Figs. 3 and

5. The possibility for ÃR ≈ 0 may appear only when the
beam energy of neutrinos is around E ≈ 0.2 GeV, as shown
in Fig. 6. These results are certainly dependent upon our
inputs. Therefore, they mainly serve for illustration.
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In practice, the reconstruction of a unitarity triangle
requires a series of measurements, which can be done in
both appearance and disappearance neutrino oscillation ex-
periments. More detailed analyses in this respect can be
seen from [9] (see also [22]), where the central attention
has only been paid to the triangle �τ and its effective
counterpart �̃τ . A similar analysis of the other triangles
is expected to be very lengthy and will be presented else-
where [23]. As we have emphasized, it is possible to estab-
lish leptonic CP violation by means of the precise experi-
mental information about the sides of six unitarity trian-
gles. In this sense, the geometric approach described here
may be complimentary to the direct determination of CP
violation from the measurement of probability asymme-
tries between να → νβ and να → νβ (for α 	= β running
over e, µ, τ) oscillations.

6 Summary

Considering the lepton flavor mixing matrix V and its ef-
fective counterpart Ṽ in matter, we have carried out a
systematic analysis of their corresponding unitarity trian-
gles in the complex plane. The exact analytical relations
between the moduli |Vαi| and |Ṽαi| have been derived. The
sides and angles of each unitarity triangle have also been
calculated by taking account of the terrestrial matter ef-
fect. We have illustrated the shape evolution of six ef-
fective triangles with the beam energy of neutrinos and
antineutrinos in a realistic long-baseline oscillation exper-
iment. Matter corrections to the rephasing-invariant pa-
rameter of CP violation and the off-diagonal asymmetries
of V have been discussed too.

We expect that this complete geometric description of
matter-modified lepton flavor mixing and CP violation
will be very useful for the future long-baseline neutrino
oscillation experiments, although it remains unclear how
far our experimentalists will go in this direction. We admit
that how to experimentally realize the proposed ideas and
methods is certainly a challenging question. However, it is
absolutely clear that the measurement of leptonic CP vio-
lation must be a top task of experimental neutrino physics
in the coming years or even decades. Let us recall what has
happened in the quark sector: CP violation and one uni-
tarity triangle (defined by VudV

∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

in the complex plane) have been established at KEK-B
and SLAC-B factories, and a further study of the other
five triangles will be implemented at LHC-B in the near
future. Thus we are convinced that similar steps will be
taken for an experimental determination of leptonic CP
violation and unitarity triangles in the era of precision
neutrino physics.
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Appendix A:

In the assumption of a constant earth density profile and
with the help of the effective Hamiltonians given in (6),
one may calculate the matter-corrected neutrino masses
m̃i in an analytically exact way. The relevant results have
been presented in [10,11], from which both ∆̃ij ≡ m̃2

i −m̃2
j

and ∆̂ij ≡ m2
i − m̃2

j appearing in (19)–(22) and (29)–(34)
can straightforwardly be read off. Explicitly, we have

∆̃21 =
2
3

√
x2 − 3y

√
3 (1 − z2) ,

∆̃31 =
1
3

√
x2 − 3y

[
3z +

√
3 (1 − z2)

]
,

∆̃32 =
1
3

√
x2 − 3y

[
3z −

√
3 (1 − z2)

]
; (A.1)

and

∆̂11 = −1
3
x +

1
3

√
x2 − 3y

[
z +

√
3 (1 − z2)

]
,

∆̂22 = −1
3
x +

1
3

√
x2 − 3y

[
z −

√
3 (1 − z2)

]
+ ∆21 ,

∆̂33 = −1
3
x − 2

3
z
√

x2 − 3y + ∆31 ; (A.2)

together with

∆̂21 = ∆21 + ∆̂11 ,

∆̂31 = ∆31 + ∆̂11 ,

∆̂32 = ∆32 + ∆̂22 , (A.3)

where ∆ij ≡ m2
i − m2

j , and x, y and z are given by

x = ∆21 + ∆31 + A ,

y = ∆21∆31 + A
[
∆21

(
1 − |Ve2|2

)
+ ∆31

(
1 − |Ve3|2

)]
,

z = cos

[
1
3

arccos
2x3 − 9xy + 27A∆21∆31|Ve1|2

2 (x2 − 3y)3/2

]
, (A.4)

with A ≡ 2Ea being the matter parameter.
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